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Abstract. We study the production of charginos e+e− → χ̃+
i χ̃−

j , (i, j = 1, 2) with polarized beams and
the subsequent decays χ̃+

i → χ̃0
k`+ν` and χ̃−

j → χ̃0
l `

−ν̄`, (k, l = 1, . . . , 4), including the complete spin
correlations between production and decay. Analytical formulae are presented for the joint spin-density
matrix of the charginos, for the chargino decay matrix and for the differential cross section of the combined
processes of production and decays. We present numerical results for pair production of the lighter chargino
with unpolarized beams and the leptonic decay of χ̃−

1 into the lightest neutralino χ̃0
1. The lepton angular

distribution and the forward-backward asymmetry are studied in four representative scenarios for
√

s =
192GeV and

√
s = 200GeV.

1 Introduction

The search for supersymmetric particles is one of the main
goals of LEP and of future e+e− colliders. The charginos,
the supersymmetric partners of the charged gauge and
Higgs bosons, are of particular interest as they are ex-
pected to be lighter than the strongly interacting gluino
and squarks. The lighter chargino χ̃±

1 could first be ob-
served in experiments at e+e− colliders.

Most studies of chargino production e+e− → χ̃+
i χ̃−

j ,
i, j = 1, 2, and chargino decays have been performed in
the Minimal Supersymmetric Standard Model (MSSM).
(See, for example [1–3], and references therein.) For a clear
identification of charginos a precise analysis of their decay
characteristics is indispensable. Angular distributions and
angular correlations of the decay products of the charginos
give valuable information on their gaugino and higgsino
components and thus on the parameters of the MSSM.

Since angular distributions depend on the polarization
of the parent particles one has to take into account the
spin correlations between production and decay of the
charginos. In general quantum mechanical interference ef-
fects between various polarization states of the decaying
particles preclude simple factorization of the differential
cross section into a production and a decay factor [4,5],
unless the production amplitude is dominated by a single
spin component [6]. Recently, pair production and decay
of the lighter chargino with spin correlations has also been
studied in [7]. A variety of event generators for production
and decay of SUSY particles, such as DFGT, SUSYGEN,
GRACE and CompHEP [8], have been developed which
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partly also include spin correlations between production
and decay.

In the present paper we study the process e+e− →
χ̃+

i χ̃−
j , (i, j = 1, 2) with polarized beams and the subse-

quent leptonic decays χ̃+
i → χ̃0

k`+ν`, χ̃
−
j → χ̃0

l `
−ν̄`. The

main purpose of this paper is the presentation of analytical
formulae for the complete spin correlations between pro-
duction and decay. The computation is done for complex
couplings so that the formulae are also useful for the study
of CP violating phenomena. The expression for the differ-
ential cross section is composed of the joint spin density
matrix of the charginos and the decay matrices for their
leptonic decay into one of the neutralino states.

The analytical expressions given for the production
density matrix can also be used as a building block for pro-
cesses with other chargino decay channels as e.g. hadronic
decay or sequential chargino decay. Furthermore, the de-
cay matrix can be combined with other chargino produc-
tion processes as e.g. e−γ or γγ collisions.

Since in this article our emphasis is on the analyti-
cal formulae we restrict ourselves in the numerical cal-
culations to the pair production of the lighter chargino
with unpolarized beams, and to the leptonic decay of one
chargino into the lightest neutralino χ̃0

1.
In Sect. 2 we present the analytical expressions for the

spin–density matrix for production, for the decay matrix
and for the differential cross section. Numerical results for
the lepton angular distribution for LEP 2 energies

√
s =

192 GeV and
√

s = 200 GeV are given in Sect. 3 for four
scenarios which differ significantly in the mixing character
of the chargino and the lightest neutralino.
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Fig. 1. Feynman graphs for production and leptonic decays of
charginos

2 Analytical formulae

2.1 Definition of couplings

We study the process

e−(p1) + e+(p2) → χ̃+
i (p3) + χ̃−

j (p4), (1)

where the charginos decay leptonically:

χ̃+
i (p3) → χ̃0

k(p5) + `+(p6) + ν(p7), (2)
and

χ̃−
j (p4) → χ̃0

l (p8) + `−(p9) + ν̄(p10) (3)

The corresponding Feynman diagrams are shown in Fig. 1.
The production process contains contributions from γ-
and Z0-exchange in the direct channel and from ν̃-exchan-
ge in the crossed channel. The decay process gets contri-
butions from W±, ẽL, and ν̃ exchange in the different
channels.

From the interaction Lagrangian of the MSSM (in our
notation and conventions we follow closely [9]):

Lγχ̃+
i

χ̃+
j

= −eAµ
¯̃χ+

i γµχ̃+
j δij , e > 0, (4)

LZ0χ̃+
i

χ̃+
j

=
g

cos θW
Zµ

¯̃χ+
i γµ[O

′L
ij PL + O

′R
ij PR]χ̃+

j , (5)

L`ν̃χ̃+
i

= −gU∗
i1

¯̃χ+
i PLν ˜̀∗

L − gV ∗
i1

¯̃χ+C
i PL`ν̃∗ + h.c., (6)

LW −χ̃+
i

χ̃0
k

= gW−
µ

¯̃χ0
kγµ[OL

kiPL + OR
kiPR]χ̃+

i + h.c., (7)

L`˜̀χ̃0
k

= gfL
`k

¯̀PRχ̃0
k
˜̀
L + gfR

`k
¯̀PLχ̃0

k
˜̀
R + h.c., (8)

Lνν̃χ̃0
k

= gfL
νkν̄PRχ̃0

kν̃L + h.c., (9)

one gets the couplings:

L` = T3` − e` sin2 θW , R` = −e` sin2 θW , (10)

fL
`k = −

√
2
[

1
cos θW

(T3` − e` sin2 θW )Nk2

+e` sin θW Nk1

]
,

fR
`k = −

√
2e` sin θW

[
tan θW N∗

k2 − N∗
k1

]
,

fL
νk = −

√
2

1
cos θW

T3νNk2, (11)

O
′L
ij = −Vi1V

∗
j1 − 1

2
Vi2V

∗
j2 + δij sin2 ΘW ,

O
′R
ij = −U∗

i1Uj1 − 1
2
U∗

i2Uj2 + δij sin2 ΘW , (12)

OL
ki = −1/

√
2
(

cos βNk4 − sinβNk3

)
V ∗

i2

+
(

sinΘW Nk1 + cos ΘW Nk2

)
V ∗

i1,

OR
ki = +1/

√
2
(

sinβN∗
k4 + cos βN∗

k3

)
Ui2

+
(

sinΘW N∗
k1 + cos ΘW N∗

k2

)
Ui1, (13)

with i, j = 1, 2 and k = 1, . . . , 4. Here PL,R = 1
2 (1 ∓ γ5),

g is the weak coupling constant (g = e/ sin θW ), and e`

and T3` denote the charge and the third component of
the weak isospin of the lepton `. Furthermore, tanβ =
v2
v1

where v1,2 are the vacuum expectation values of the
two neutral Higgs fields, and Nmn are the elements of
the unitary 4 × 4 matrix which diagonalizes the neutral
gaugino-higgsino mass matrix in the basis γ̃, Z̃, H̃0

a , H̃0
b .

The chargino mass eigenstates χ̃+
i =

(χ+
i

χ−
i

)
are defined by

χ+
i = Vi1w

+ + Vi2h
+ and χ−

j = Uj1w
− + Uj2h

−. Here w±

and h± are the two-component spinor fields of the W-ino
and the charged higgsinos, respectively. Furthermore, Umn

and Vmn are the elements of the unitary 2 × 2 matrices
which diagonalize the chargino mass matrix. For details
see [1].

The helicity amplitudes T
λiλj

P (α) for production and
TD,λi(α), TD,λj (α) for the decays, corresponding to the
Feynman diagrams in Fig. 1 are:

T
λiλj

P (γ) = −∆(γ)δij v̄(p2)γµu(p1)ūλi
(p3)γµvλj

(p4), (14)

T
λiλj

P (Z) = −∆(Z)v̄(p2)γµ(L`PL + R`PR)u(p1)

× ūλi(p3)γµ(O
′L
ij PL + O

′R
ij PR)vλj (p4), (15)

T
λiλj

P (ν̃) = −∆ij(ν̃)v̄(p2)PRvλi
(p3)ūλj

(p4)PLu(p1), (16)

TD,λi(W
+) = −∆(W )ū(p5)γµ(OL

kiPL + OR
kiPR)

× uλi(p3)ū(p7)γµPLv(p6), (17)

TD,λi
(˜̀L) = −∆i(˜̀L)ū(p7)PRuλi

(p3)ū(p5)PLv(p6), (18)

TD,λi
(ν̃) = +∆i(ν̃)ū(p6)PLuλi

(p3)ū(p5)PRv(p7), (19)

TD,λj
(W−) = −∆(W )ū(p8)γµ(OL∗

lj PR + OR∗
lj PL)
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× uλj
(p4)ū(p10)γµPRv(p9), (20)

TD,λj
(˜̀L) = −∆j(˜̀L)ū(p10)PLuλj

(p4)ū(p8)PRv(p9), (21)

TD,λj (ν̃) = +∆j(ν̃)ū(p9)PRuλj (p4)ū(p8)PLv(p10). (22)

In the following the indices of the couplings O
′L,R
ij and

OL,R
ki , OL,R

lj are suppressed. In (14)–(22) the propagators
∆(γ) etc. include all couplings apart from OL,R and O

′L,R.
They are defined as follows:

∆(γ) =
ie2

k2 , ∆(Z) =
g2

cos Θ2
W

i

k2 − m2
Z + imZΓZ

,

∆ij(ν̃) =
ig2Vi1V

∗
j1

k2 − m2
ν̃ + imν̃Γν̃

∆(W ) =
g2
√

2
i

k2 − m2
W + imW ΓW

,

∆i(˜̀L) =
ig2Ui1f

∗L
`k

k2 − m2
˜̀
L

+ im˜̀
L
Γ˜̀

L

,

∆i(ν̃) =
ig2V ∗

i1f
L
νk

k2 − m2
ν̃ + imν̃Γν̃

∆j(˜̀L) =
ig2U∗

j1f
L
`l

k2 − m2
˜̀
L

+ im˜̀
L
Γ˜̀

L

,

∆j(ν̃) =
ig2Vj1f

∗L
νl

k2 − m2
ν̃ + imν̃Γν̃

. (23)

Here k2 denotes the four-momentum squared of the re-
spective particle.

For the calculation of the amplitude of the combined
processes of production and decays, (1)–(3), we use the
same formalism that we already adopted for the analogous
production of neutralinos and their decays with polarized
beams [10,11] following the method of [12]. The amplitude
for the whole process is

T = ∆(χ̃+
i )∆(χ̃−

j )
∑
λi,λj

T
λiλj

P TD,λiλj
, (24)

with the helicity amplitude for the production process
T

λiλj

P and that for the decay processes TD,λiλj
= TD,λi

TD,λj , and the propagators ∆(χ̃±
i,j) = 1/[si,j − m2

i,j +
imi,jΓi,j ]. Here λi,j , si,j , mi,j , Γi,j denote the helicity,
four–momentum squared, mass and width of χ̃±

i,j . The am-
plitude squared

|T |2 = |∆(χ̃+
i )|2|∆(χ̃−

j )|2ρP,λiλjλ′
iλ

′
j ρD

λ′
i
λi

ρD
λ′

j
λj

(sum convention used) (25)

is thus composed of the (unnormalized) spin density pro-
duction matrix

ρP,λiλjλ′
iλ

′
j = T

λiλj

P T
λ′

iλ
′
j∗

P (26)

of χ̃±
i,j and the decay matrices

ρD
λ′

i
λi

= TD,λi
T ∗

D,λ′
i

and ρD
λ′

j
λj

= TD,λj
T ∗

D,λ′
j
. (27)

Interference terms between various helicity amplitudes pre-
clude factorization in a production factor

∑
λiλj

|Tλiλj

P |2
times a decay factor

∑
λiλj

|TD,λiλj
|2.

The differential cross section in the laboratory system
is then given by:

dσ =
1

8E2
b

|T |2(2π)4δ4

(
p1 + p2 −

∑
i

pi

)
dlips(p3 . . . p10),

(28)
Eb denotes the beam energy and dlips(p3, . . . , p10) =∏

i
d3pi

(2π)32p0
i

, i = 3, . . . , 10.

2.2 Spin density production matrix

We use the general formalism to calculate the helicity am-
plitudes for production and decay of a particle with four-
momentum p and mass m. For this purpose we introduce
three spacelike four-vectors sa

µ, (a = 1, 2, 3), the spin vec-
tors, which together with p/m form an orthonormal set
[12]:

p

m
· sa = 0, (29)

sa · sa′
= −δaa′

, (30)

sa
µ · sa

ν = −gµν +
pµpν

m2 , summed over a. (31)

In computing the density matrices for production and de-
cay one makes use of the Bouchiat-Michel formulae [12]:

uλ′(p)ūλ(p) =
1
2
[δλλ′ + γ5 6saσa

λλ′ ](6p + m), (32)

vλ′(p)v̄λ(p) =
1
2
[δλ′λ + γ5 6saσa

λ′λ](6p − m). (33)

In the amplitude squared, (25), the spin vector sa enters
linearly the matrices ρP,λiλjλ′

iλ
′
j , ρD

λ′
i
λi

and ρD
λ′

j
λj

. It is ap-
propriate to separate the spin density production matrix
ρP,λiλjλ′

iλ
′
j into four parts:

ρP,λiλjλ′
iλ

′
j =

∑
αβ

(
Pλiλjλ′

iλ
′
j (αβ) + Σ

P,λiλjλ′
iλ

′
j

a (αβ)

+Σ
P,λiλjλ′

iλ
′
j

b (αβ) + Σ
P,λiλjλ′

iλ
′
j

ab (αβ)
)
, (34)

with (αβ) = (γγ), (γZ0), (γν̃), (Z0Z0), (Z0ν̃), (ν̃ν̃) denot-
ing the exchanged particles, where the second argument
corresponds to the complex conjugated amplitude. One
has only these six combinations of exchanged particles in
(34) due to the relation:

ρP,λiλjλ′
iλ

′
j (αβ) = (ρP,λiλjλ′

iλ
′
j (βα))∗. (35)

The four parts are defined as follows:

Pλiλjλ′
iλ

′
j (αβ) = δλiλ′

i
δλjλ′

j
P (αβ), (36)
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which is independent of the polarization of the charginos,

Σ
P,λiλjλ′

iλ
′
j

a (αβ) = δλjλ′
j
σa

λiλ′
i
ΣP

a (αβ), (37)

where only the polarization vector sa of the chargino
χ̃+

i (p3) contributes,

Σ
P,λiλ

′
iλjλ′

j

b (αβ) = δλiλ′
i
σb

λjλ′
j
ΣP

b (αβ), (38)

where only the polarization vector sb of the chargino
χ̃−

j (p4) contributes,

Σ
Pλiλjλ′

iλ
′
j

ab (αβ) = σa
λiλ′

i
σb

λjλ′
j
ΣP

ab(αβ), (39)

which includes the polarization vectors sa and sb of both
charginos χ̃+

i and χ̃−
j .

σa
λiλ′

i
, σb

λjλ′
j

are the 2 × 2 Pauli matrices.
In the following we give the analytical formulae for

the various quantities in (34). Scalar products are de-
noted by (pipj). We use the abbrevation [pipjpkpl] =
iεµνρσpµ

i pν
j pρ

kpσ
l , where the totally antisymmetric ten-

sor εµνρσ = +1, if {µνρσ} is an even permutation of
{0, 1, 2, 3}.

It is useful to define a coupling cL(R)(α) for the ex-
changed particle (α) with

cL(γ) = 1 (40)

cL(Z0) = L` (41)

cL(ν̃) = 1 (42)

cR(γ) = 1 (43)

cR(Z0) = R` (44)

cR(ν̃) = 0 (45)

We further introduce the combination cP
±(αβ) which com-

bines the coupling cL(R)(α) with the longitudinal beam
polarization P 3

1 and P 3
2 of the incoming particles e−(p1)

and e+(p2):

cP
±(αβ) = ±cL(α)cL(β)(1 − P 3

1 )(1 + P 3
2 )

+cR(α)cR(β)(1 + P 3
1 )(1 − P 3

2 ) (46)

For unpolarized beams one has P 3
1 = 0 = P 3

2 in (46).

2.2.1 P (αβ)

This is the part of (34) which is independent of the chargino
polarization vectors. In P (αβ) only three different pairs of
scalar products contribute:

f1 = (p1p4)(p2p3), (47)
f2 = (p1p3)(p2p4), (48)
f3 = mimj(p1p2). (49)

The analytical expressions for P (αβ), (36), read:

P (γγ) = |∆(γ)|2cP
+(γγ)δij(f1 + f2 + f3), (50)

P (γZ) = 2Re

{
∆(γ)∆(Z)∗δij

1
2

×
[
cP
+(γZ)(O

′L∗ + O
′R∗)(f1 + f2 + f3)

+cP
−(γZ)(O

′R∗ − O
′L∗)(f1 − f2)

]}
, (51)

P (γν̃) = 2Re

{
∆(γ)∆∗

ij(ν̃)δij
1
4
cP
+(γν̃)(2f1 + f3)

}
, (52)

P (ZZ) = |∆(Z)|2 1
2

[
cP
+(ZZ)

(
(|O′L|2 + |O′R|2)(f1 + f2)

−(OLO
′R∗ + ORO

′L∗)(−f3)
)

+cP
−(ZZ)(|O′R|2 − |O′L|2)(f1 − f2)

]
, (53)

P (Zν̃) = 2Re

{
∆(Z)∆∗

ij(ν̃)
1
4
cP
+(Zν̃)

×(2O
′Lf1 + O

′Rf3)
}

, (54)

P (ν̃ν̃) = |∆ij(ν̃)|2 1
4
cP
+(ν̃ν̃)f1. (55)

2.2.2 ΣP
a (αβ) and ΣP

b (αβ)

This is the part of (34) which contains only one polariza-
tion vector, either sa of χ̃+

i or sb of χ̃−
j . In ΣP

a (αβ), (37),
the following five products with the polarization vector sa

appear:

fa
1 = mi(p2p4)(p1s

a), (56)
fa
2 = mi(p1p4)(p2s

a), (57)
fa
3 = mj(p2p3)(p1s

a), (58)
fa
4 = mj(p1p3)(p2s

a), (59)
fa
5 = mj [p2p1s

ap3]. (60)

The contributions
∑P

a (αβ) in (37) are:

ΣP
a (γγ) = |∆(γ)|2cP

−(γγ)δij(−fa
1 + fa

2 − fa
3 + fa

4 ), (61)

ΣP
a (γZ) = 2Re

{
∆(γ)∆∗(Z)

1
2
δij

[
cP
+(γZ)

×(O
′R∗ − O

′L∗)(fa
1 + fa

2 ) + cP
−(γZ)(

(O
′R∗ + O

′L∗)(−fa
1 + fa

2 − fa
3 + fa

4 )

−(O
′R∗ − O

′L∗)fa
5

)]}
, (62)

ΣP
a (γν̃) = 2Re

{
∆(γ)∆∗

ij(ν̃)
1
4
δijc

P
+(γν̃)

×(−2fa
2 + fa

3 − fa
4 − fa

5 )
}

, (63)
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ΣP
a (ZZ) = |∆(Z)|2 1

2

[
cP
+(ZZ)(|O′R|2 − |O′L|2)(fa

1 + fa
2 )

+cP
−(ZZ)

(
(O

′LO
′R∗ + O

′RO
′L∗)(−fa

3 + fa
4 )

+(|O′R|2 + |O′L|2)(−fa
1 + fa

2 )

−(O
′LO

′R∗ − O
′RO

′L∗)fa
5

)]
, (64)

ΣP
a (Zν̃) = 2Re

{
∆(Z)∆∗

ij(ν̃)
1
4
cP
+(Zν̃)

×(− 2O
′Lfa

2 − O
′R(−fa

3 + fa
4 + fa

5 )
)}

, (65)

ΣP
a (ν̃ν̃) = |∆ij(ν̃)|2 1

4
cP
+(ν̃ν̃)(−fa

2 ). (66)

In the analogous formulae for
∑P

b (αβ), (38), the following
five products containing the polarization vector sb con-
tribute:

f b
1 = mi(p2p4)(p1s

b), (67)

f b
2 = mi(p1p4)(p2s

b), (68)

f b
3 = mj(p2p3)(p1s

b), (69)

f b
4 = mj(p1p3)(p2s

b), (70)

f b
5 = mi[p2p1s

bp4], (71)

The corresponding formulae for
∑P

b (αβ) are obtained by
substituting in (61)–(66):

fa
1 → −f b

4 , fa
2 → −f b

3 , fa
3 → −f b

2 ,

fa
4 → −f b

1 , fa
5 → −f b

5 . (72)

2.2.3 ΣP
ab(αβ)

This is the part of (34) which contains both polarization
vectors sa of χ̃+

i and sb of χ̃−
j . It can be expressed by eight

different combinations of products with both spin vectors:

fab
1 = (p3p4)(p1s

a)(p2s
b), (73)

fab
2 = mimj(p1s

a)(p2s
b), (74)

fab
3 = (p3p4)(p1s

b)(p2s
a), (75)

fab
4 = mimj(p1s

b)(p2s
a), (76)

fab
5 = (sasb)[(p1p4)(p2p3)

−(p1p2)(p3p4) + (p1p3)(p2p4)], (77)

fab
6 = (p3s

b)[(p1p2)(p4s
a)

−(p1p4)(p2s
a) − (p2p4)(p1s

a)], (78)

fab
7 = (p4s

a)[(p1p3)(p2s
b)

+(p2p3)(p1s
b)], (79)

fab
8 = (p2p4)[sbsap3p1] − (p3p1)[sbsap2p4]

+(p2s
b)[sap3p1p4] + (sap1)[sbp3p2p4]. (80)

The contributions
∑P

ab(αβ) in (39) are:

ΣP
ab(γγ) = |∆(γ)|2cP

+(γγ)δij(−fab
1 − fab

2 − fab
3

−fab
4 − fab

5 − fab
6 + fab

7 ) (81)

ΣP
ab(γZ) = 2Re

{
∆(γ)∆∗(Z)

1
2
δij

×
[
cP
+(γZ)

(
(O

′R∗ − O
′L∗)fab

8

+(O
′R∗ + O

′L∗)(−fab
1 − fab

2 − fab
3

−fab
4 − fab

5 − fab
6 + fab

7 )
)

+cP
−(γZ)(O

′R∗ − O
′L∗)(fab

2 − fab
4 )
]}

, (82)

ΣP
ab(γν̃) = 2Re

{
∆(γ)∆∗

ij(ν̃)
1
4
δijc

P
+(γν̃)(−fab

1 − fab
3

−2fab
4 − fab

5 − fab
6 + fab

7 − fab
8 )
}
, (83)

ΣP
ab(ZZ) = |∆(Z)|2 1

2

[
cP
+(ZZ)

(
(O

′LO
′R∗ + O

′RO
′L∗)

×(−fab
1 − fab

3 − fab
5 − fab

6 + fab
7 )

+(|O′R|2 + |O′L|2)(−fab
2 − fab

4 )

−(O
′LO

′R∗ − O
′RO

′L∗)(−fab
8 )
)

+cP
−(ZZ)(|O′L|2 − |O′R|2)

×(−fab
2 + fab

4 )
]

(84)

ΣP
ab(Zν̃) = 2Re

{
∆(Z)∆∗

ij(ν̃)
1
4
cP
+(Zν̃)

×(− 2O
′Lfab

4 − O
′R(fab

1 + fab
3 + fab

5

+fab
6 − fab

7 + fab
8 )
)}

(85)

ΣP
ab(ν̃ν̃) = |∆ij(ν̃)|2 1

4
cP
+(ν̃ν̃)(−fab

4 ) (86)

2.3 Decay matrix

In the following we give the analytical formulae for the
(unnormalized) decay matrices for both decays χ̃+

i (p3) →
χ̃0

k(p5) + `+(p6) + ν(p7) and χ̃−
j (p4) → χ̃0

l (p8) + `−(p9) +
ν̄(p10) (see Fig. 1). In the following mk and ml denote the
masses of the neutralinos χ̃0

k and χ̃0
l . Analogously to (34)

the decay matrices ρD
λ′

i
λi

and ρD
λ′

j
λj

can both be separated
into two parts:

ρD
λ′

i
λi

=
∑
αβ

(
Dλ′

i
λi

(αβ) + ΣD
a,λ′

i
λi

(αβ)
)
, (87)

ρD
λ′

j
λj

=
∑
αβ

(
Dλ′

j
λj

(αβ) + ΣD
b,λ′

j
λj

(αβ)
)
, (88)

with (αβ) = (WW ), (W ˜̀
L), (Wν̃), (˜̀L ˜̀

L), (˜̀Lν̃), (ν̃ν̃) de-
noting the exchanged particle. The second argument cor-
responds to the complex conjugated amplitude. Here we
have also used the relation analogous to (35). The combi-
nations (βα) are therefore already included.

The two parts in (87) and (88) are given as follows:

Dλ′
i
λi

(αβ) = δλ′
i
λi

Di(αβ), (89)
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which is independent of the polarization vector of the
chargino χ̃+

i (p3),

ΣD
a,λ′

i
λi

(αβ) = σa
λ′

i
λi

ΣD
a (αβ), (90)

where the polarization vector sa of the chargino χ̃+
i (p3)

contributes,

Dλ′
j
λj

(αβ) = δλ′
j
λj

Dj(αβ), (91)

which is independent of the polarization vector of the
chargino χ̃−

j (p4),

ΣD
b,λ′

j
λj

(αβ) = σb
λ′

j
λj

ΣD
b (αβ), (92)

where the polarization vector sb of the chargino χ̃−
j (p4)

contributes.

2.3.1 Di(αβ) and Dj(αβ)

These are the parts of (87) and (88) which are independent
of the polarization vector sa (sb) of the decaying chargino
χ̃+

i (χ̃−
j ). In the term Di(αβ), (89), for the decay of χ̃+

i (p3)
only three different pairs of scalar products contribute:

g1 = (p5p7)(p3p6), (93)
g2 = (p5p6)(p3p7), (94)
g3 = (mimk)(p6p7). (95)

The analytical expressions for Di(αβ), (89), read:

Di(W+W+) = |∆(W )|24
[
(|OL|2 + |OR|2)(g1 + g2)

−(OL∗OR + OLOR∗)g3

−(|OR|2 − |OL|2)(g1 − g2)
]
, (96)

Di(W+ ˜̀
L) = 2Re

{
∆(W )∆∗

i (˜̀L)2(
2ORg2 − OLg3

)}
, (97)

Di(W+ν̃) = 2Re
{

− ∆(W )∆∗
i (ν̃)2(

2OLg1 − ORg3

)}
, (98)

Di(˜̀L ˜̀
L) = |∆i(˜̀L)|22g2, (99)

Di(˜̀Lν̃) = 2Re
{
∆i(˜̀L)∆∗

i (ν̃)g3
}
, (100)

Di(ν̃ν̃) = |∆i(ν̃)|22g1. (101)

The corresponding scalar products for the decay of the
χ̃−

j (p4) and the expressions for Dj(αβ), (91), are obtained
by the following substitutions:

p5 → p8, p6 → p9, p7 → p10, mi → mj , mk → ml (102)

OL
ki → OL∗

lj , OR
ki → OR∗

lj (103)

∆i(˜̀L) → ∆j(˜̀L), ∆i(ν̃) → ∆j(ν̃) (see (23)). (104)

2.3.2 ΣD
a (αβ) and ΣD

b (αβ)

These are the parts of (87) and (88) which contain the
polarization vector either sa of χ̃+

i or sb of χ̃−
j . In the

term ΣD
a (αβ) of (90) the following five products with the

polarization vector sa appear:

ga
1 = mi(p5p7)(p6s

a), (105)
ga
2 = mi(p5p6)(p7s

a), (106)
ga
3 = mk(p3p7)(p6s

a), (107)
ga
4 = mk(p3p6)(p7s

a), (108)
ga
5 = mk[sap3p7p6]. (109)

ΣD
a (W+W+) = |∆(W )|24

[
(|OR|2 − |OL|2)(ga

1 + ga
2 )

× −(OL∗OR + OLOR∗)(−ga
3 + ga

4 )

× −(|OR|2 + |OL|2)(ga
1 − ga

2 )

× +(OL∗OR − OLOR∗)ga
5

]
, (110)

ΣD
a (W+ ˜̀

L) = 2Re
{

∆(W )∆∗
i (˜̀L)2

[
2ORga

2 − OL

× (−ga
3 + ga

4 + ga
5 )
]}

, (111)

ΣD
a (W+ν̃) = 2Re

{
− ∆(W )∆∗

i (ν̃)2
[

− 2OLga
1 − OR

× (−ga
3 + ga

4 − ga
5 )
]}

, (112)

ΣD
a (˜̀L ˜̀

L) = |∆i(˜̀L)|22ga
2 , (113)

ΣD
a (˜̀Lν̃) = 2Re

{− ∆i(˜̀L)∆∗
i (ν̃)(ga

3 − ga
4 + ga

5 )
}
, (114)

ΣD
a (ν̃ν̃) = |∆i(ν̃)|22(−ga

1 ) (115)

The corresponding expressions ΣD
b (αβ), (92), for the de-

cay of χ̃−
j (p4) one obtains by the same substitutions as in

2.3.1, (102)–(104), and the additional substitution sa →
−sb in (105)–(108) and [sap3p7p6] → [(−sb)p4p10p9]∗ in
(109).

2.4 Amplitude squared for production and decay

The amplitude squared |T |2 of the combined processes of
production and decays, (1)–(3), is given by:

|T |2 =
∑

(αβ)(αiβi)(αjβj)

4
(
P (αβ)Di(αiβi)Dj(αjβj)

+ΣP
a (αβ)ΣD

a (αiβi)Dj(αjβj)

+ΣP
b (αβ)ΣD

b (αjβj)Di(αiβi)

+ΣP
ab(αβ)ΣD

a (αiβi)ΣD
b (αjβj)

)
. (116)

The arguments label the six combinations of the exchanged
particles:

(αβ) : (γγ), (γZ), (γν̃), (ZZ), (Zν̃), (ν̃ν̃), (117)

(αiβi) : (W+W+), (W+ ˜̀
L), (W+ν̃),

(˜̀L ˜̀
L), (˜̀Lν̃), (ν̃ν̃), (118)

(αjβj) : (W−W−), (W− ˜̀
L), (W−ν̃),

(˜̀L ˜̀
L), (˜̀Lν̃), (ν̃ν̃). (119)
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Table 1. Parameters M, µ, tan β, and m0, and the resulting mass eigenvalues.
All masses are given in [GeV]

M µ tan β m0 mχ̃0
1

m
χ̃±
1

mẽL mν̃

A 87 −800 3 200 45 91 219 207
B 91.5 −800 40 200 (100) 45 91 221 (137) 206 (112)
C 363 107 3 200 76 −91 382 375
D 302 99 40 200 75 −91 338 328

Table 2. Mixing character of the chargino χ̃±
1 and the neutralino χ̃0

1

χ̃+
1 χ̃−

1 χ̃0
1

(w+| H+) (w−| H−) (γ̃| Z̃| H̃0
a | H̃0

b )

A (+1.0| +.03) (+.99| +.13) (+.90| −.44| −.03| -.04)
B (+1.0| −.01) (+.99| +.14) (+.87| −.48| +.0004| −.05)
C (+.33| −.95) (−.18| +.98) (+.18| −.35| +.78| +.48)
D (+.38| −.92) (−.13| +.99) (−.19| +.34| −.58| −.72)

The first product in (116) is the part obtained by ne-
glecting all spin correlations between production and de-
cay. The second and third term describe the correlations
between the production and the decay process either of
χ̃+

i → χ̃0
k`+ν` or χ̃−

j → χ̃0
``

−ν̄`, and in the last term cor-
relations between both decay processes are included.

– In the first term of (116) only scalar products appear
which can be expressed by the Mandelstam variables
s, t, u for the production and decay processes.

– To obtain the second (third) term of (116) one has to
calculate all combinations of fa

m × ga
n, m, n = 1, . . . , 5

(f b
m × gb

n, m, n = 1, . . . , 5) using (31). In this way one
gets additional scalar products:

(p1,2p6,7), (p1,2p9,10), (120)

describing correlations between production and decay.
These scalar products can not be expressed by Man-
delstam variables. They contain the angle between the
incoming electron and the outgoing lepton in the lab-
oratory system. The combinations [s(a,b)pkplpm], (60),
(71), (109), are due to complex parameters and to the
term in the propagators, (23), containing the width
of the exchanged particle. They lead to triple product
correlations (using (31)):

[p1,2p3p7p6], [p1,2p4p10p9],
[p6,7p2p1p3], [p9,10p2p1p4]. (121)

– To obtain the last term of (116) one has to calculate all
combinations of fab

m × ga
ni

× gb
nj

, m = 1, . . . , 8, ni, nj =
1, . . . , 5 using again (31). Then due to the combina-
tions (sasb), (77), and [sasbpkpl], (80), also correlations
between the decay products of both charginos appear:

(p6,7p9,10), [p6,7p4p10p9], [p9,10p3p7p6],
[p9,10p6,7p3p1], [p9,10p6,7p2p4]. (122)

If only the decay of one chargino, e.g. χ̃−
j is consid-

ered, one has to sum over the spin of χ̃+
i so that in (116)

Di(αiβi) = 1 and ΣD
a (αiβi) = 0.

3 Numerical results and discussion

In the MSSM [9] the masses and couplings of charginos
and neutralinos are determined by the parameters M ′,
M , µ, tanβ, with M ′ usually fixed by the GUT relation
M ′ = 5

3M tan2 ΘW . Since we do not consider CP violation
in the following analysis, the parameters and the couplings
of charginos and neutralinos can be chosen real. The neu-
tralino and chargino mass mixing matrices can be found
in [9,13].

The masses of the sleptons and of the sneutrinos are
related to the parameters M and tanβ of the MSSM and
to the common scalar mass m0 at the unification point by
the renormalization group equations [14]:

m2
f̃L

= m2
0+0.79M2+m2

Z cos 2β(T f
3 −Qf sin2 ΘW ). (123)

Here T f
3 and Qf denote the third component of the weak

isospin and the charge of the corresponding fermion.
In the following numerical analysis we study the pair

production of the lighter chargino χ̃±
1 with unpolarized

beams, where one of the charginos decays leptonically,
χ̃−

1 → χ̃0
1 + `− + ν̄`. In order to illustrate the influence

of the gaugino–higgsino mixing of χ̃±
1 and χ̃0

1 we consider
four representative scenarios.

In Table 1 we give the parameters and the mass eigen-
values (including their sign). For the scalar mass parame-
ter we choose in general m0 = 200 GeV. Since the angular
distribution depends also on the value of m0, we compare
in scenario (B) the numerical results for m0 = 200 GeV
with those for m0 = 100 GeV. In Table 2 the gaugino and
higgsino components of the chargino and of χ̃0

1 are given.
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Table 3. σ(e−e+ → χ̃+
1 χ̃−

1 )×BR(χ̃−
1 → χ̃0

1`
−ν̄) and forward-

backward asymmetries AFB , (124), for
√

s = 192GeV

A B C D

σt /fb 339 587 177 175
AFB +.063 +.389 −.016 −.034

In scenarios (A) and (B) for low and high tanβ, respec-
tively, χ̃±

1 is almost a pure W-ino and χ̃0
1 is almost a pure

B-ino. In scenarios (C) and (D) for low and high tanβ,
respectively, both χ̃±

1 and χ̃0
1 have dominating higgsino

components.
In the following we will discuss the angular distribution

dσ/d cos Θ− (where Θ− is the angle between the outgo-
ing `− and the electron beam) and the forward-backward
asymmetry

AFB =
σ(cos Θ− > 0) − σ(cos Θ− < 0)
σ(cos Θ− > 0) + σ(cos Θ− < 0)

(124)

of the lepton `− from the leptonic decay χ̃−
1 → χ̃0

1+e− + ν̄
for

√
s = 192 GeV and

√
s = 200 GeV.

The total cross sections are given in Table 3 for
√

s =
192 GeV and in Table 4 for

√
s = 200 GeV. They are

independent of the spin correlations and factorize into
the chargino production cross section times the leptonic
branching ratio of χ̃−

1 [5]. For comparison the different
angular distributions in Figs. 4, 5 and 6 are normalized to
the total cross section.

To demonstrate the significance of spin correlations
we compare in Figs. 2 and 3 the angular distributions for
tanβ = 40 and

√
s = 200 GeV with the results one ob-

tains by factorizing the process in production and decay.
The spin effect is sizeable for the gaugino-like charginos of
scenario (B), Fig. 2. It is largest in the forward and in the
backward direction. The forward-backward asymmetry is
AFB = +39.5%, one order of magnitude larger as that
obtained neglecting the spin correlations between produc-
tion and decay. For the higgsino-like scenario (D), Fig. 3,
the influence of spin correlations is less significant. Quite
generally, the influence of spin correlations is much more
pronounced for gaugino-like charginos than for higgsino-
like ones.

Especially for gaugino-like charginos the spin effects
depend sensitively on the value of tanβ. For tanβ = 3
they are smaller than for tanβ = 40. For scenario (A) with
tanβ = 3 the forward-backward asymmetry is AFB =
+6.3% (AFB = 7.9%) with spin correlations and AFB =
2.0% (AFB = 3.8%) without spin correlations at

√
s =

192 GeV (
√

s = 200 GeV). In Fig. 4 we compare the an-
gular distributions for gaugino-like charginos for

√
s =

192 GeV and m0 = 200 GeV and two values of tanβ,
tanβ = 3, scenario (A), and tanβ = 40, scenario (B). For
both values of tanβ the forward hemisphere is favoured,
and the forward-backward asymmetry AFB is +6.3% for
tanβ = 3 and +38.9% for tanβ = 40.

In contrast, for the higgsino-like charginos in scenario
(C) and (D), Fig. 5, the distributions are rather flat with

dσ
dΘ− /pb

0

0.1

0.2

0.3

0.4

0.5

0.6

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

cos Θ−

Fig. 2. Lepton angular distributions in scenario (B) for m0 =
200GeV at

√
s = 200GeV with spin correlations (solid) and

without spin correlations (dotted)

dσ
dΘ− /pb

0.06

0.08

0.1

0.12

0.14

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

cos Θ−

Fig. 3. Lepton angular distribution in scenario (D) at
√

s =
200GeV with spin correlations (solid), and without spin cor-
relations (dotted)

1
σt
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dΘ−
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0.7

0.8

0.9

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

cos Θ−

Fig. 4. Lepton angular distributions in scenario (A) (solid)
and scenario (B) (dotted) for

√
s = 192GeV, normalized to the

total cross section
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Table 4. σ(e−e+ → χ̃+
1 χ̃−

1 )×BR(χ̃−
1 → χ̃0

1`
−ν̄) and forward-backward asym-

metries AFB , (124), for
√

s = 200GeV

A B, m0 = 200GeV B, m0 = 100GeV C D

σt /fb 368 638 177 204 202
AFB +.079 +.395 .291 −.016 −.034

1
σt

dσ
dΘ−

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

cos Θ−

Fig. 5. Lepton angular distribution in scenario (C) (solid) and
scenario (D) (dotted) at

√
s = 192GeV, normalized to the total

cross section

1
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dΘ−
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cos Θ−

Fig. 6. Lepton angular distribution in scenario (B) at
√

s =
200GeV with m0 = 200GeV (solid) and m0 = 100GeV (dot-
ted), normalized to the total cross section

the backward direction somewhat favoured. The forward-
backward asymmetry is very small: AFB = −1.6% for
tanβ = 3, and AFB = −3.4% for tanβ = 40. The shape
of the angular distribution is similar at

√
s = 200 GeV

with the same values of AFB as for
√

s = 192 GeV (see
Table 4).

In the case of gaugino-like charginos the size of the
forward-backward asymmetry depends on the value of m0.
In Fig. 6 we therefore compare for scenario (B) the angu-
lar distributions for m0 = 100 GeV and m0 = 200 GeV.
For m0 = 200 GeV the forward-backward asymmetry is

AFB = +39.5% and for m0 = 100 GeV the asymmetry is
AFB = +29.1%.

4 Summary and conclusions

We have calculated the analytical expression for the dif-
ferential cross section for e+e− → χ̃+

i χ̃−
j with polarized

beams and the subsequent leptonic decays χ̃+
i → χ̃0

k`+ν`

and χ̃−
j → χ̃0

l `
−ν̄`, taking into account the complete spin

correlations between production and decays. The differ-
ential cross section is composed of the joint spin-density
matrix of the two charginos and the decay matrices for
their leptonic decays. The corresponding expressions also
include spin correlations between the leptons coming from
the decays of both charginos. Moreover, the analytical for-
mulae for the production and the decay matrices can be
used as building blocks for processes with other chargino
decay channels or for processes with other chargino pro-
duction mechanisms, as e.g. e−γ or γγ collisions.

In the numerical analysis we have studied the pair pro-
duction of the lighter chargino χ̃±

1 with unpolarized beams
and the leptonic decay of one of them, χ̃−

1 → χ̃0
1 + `− + ν̄.

We have calculated the angular distribution of `− in the
laboratory frame at

√
s = 192 GeV and

√
s = 200 GeV for

four representative MSSM scenarios which differ in the
mixing character of the chargino and in the parameter
tanβ. For the case of a gaugino-like χ̃−

1 we have also stud-
ied the influence of the scalar mass parameter m0 on the
shape of the angular distribution. Generally, the effect of
spin correlations is much more significant for gaugino-like
charginos than for higgsino-like ones.

The shape of the lepton angular distribution and the
size of the forward-backward asymmetry depend on the
nature of the charginos. For higgsino-like charginos the
angular distribution is nearly flat with a small forward-
backward asymmetry, whereas for gaugino-like ones the
forward-backward asymmetry is between 6.3% and 39.5%
for m0 = 200 GeV. In the case of gaugino-like charginos,
however, the shape of the angular distribution and the
forward-backward asymmetry depend on the scalar mass
m0.

In conclusion, we have found that for a precise anal-
ysis of the lepton angular distributions in the decays of
charginos produced in e+e− → χ̃+

i χ̃−
j the inclusion of spin

correlations between production and decay is necessary for
gaugino-like charginos.
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